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Abstract

In this paper we consider the situation of multiple malicious transmitters attempting to covertly
communicate with a single receiver. We show how the situation of non-collaborating transmitters
can be modeled by multiple access channels. The simpler situation of collaborating transmitters is
used as a bounding result. We also discuss the surprising results of Gaarder and Wolf that feedback
can increase capacity, unlike the situation for standard covert channel analysis. This is of importance
when dealing with the network scenario.
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1 Introduction

Classically, covert channel analysis has concerned itself with the situation of one transmitter and one
receiver. The only exception that we can find for this in the literature is that of the Network Pump™
[8]. However, in [8], even though the situation is brought to light, it is not analyzed. The situation of
multiple transmitters attempting to communicate covertly with one receiver also comes up when dealing
with anonymity systems [16]. Recent work [13, 14, 15] discusses how quasi-anonymous channels arise
in anonymity systems as covert channels that exist due to the lack of perfect anonymity. The quasi-
anonymous channels considered though only deal with a single transmitter and a single receiver. In this
paper we consider multiple covert channel transmitters.

For the sake of simplicity in this paper we assume that all channels are discrete and memoryless
(with stationary distributions). The mathematical foundations for this paper, multiple access channels,
were first hinted at in [19], and then put on firm ground in [1]. The definitive explanation can be found
in [4].

1.1 Anonymity Example

In [13, 14] the situation of senders communicating with their recipients! from one private enclave
to another is considered. FEach enclave is protected by a Mix-firewall. The Mix-firewall hides the
sender /recipient pairing. As in [13] we assume that every time unit ¢ (tick) a sender either sends or does
not send a single message from Enclave; to Enclave,.

Eve is tapping the line between the enclaves. Eve can count the number of messages per ¢ that go
from Enclave; to Enclave;, and Eve also knows how many possible senders there are in Enclave;. We
assume that there is a malicious sender Alice in Enclave; who wishes to communicate covertly with Eve.
By Alice sending, or not sending a message, each ¢, Alice affects the message count of Eve. This covert
channel is the quasi-anonymous channel in this anonymity system (see Fig. 1). Alice is the transmitter
and Eve is the receiver in the quasi-anonymous channel.

The other senders in Enclave; act in a clueless manner (hence their names as Clueless;, 7 = 1,... N),
that is, they act independently of Alice and they act independently of each other in an identical manner
as i.i.d. Bernoulli random variables where p is the probability that they send a message from Enclave; to
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1We use the terms transmitters and receivers when discussing Shannon communication channels. We use the terms
senders and recipients when discussing other type communication. This is done to avoid confusion between the receiver in
a covert channel and the recipient in an anonymity network.
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Figure 2: Two Transmitters — Anonymity Example

Enclave;. The obvious fact that the capacity decreases to zero as N increases was illustrated in [13, 14],
and rigorously proved in [11]. It is worth noting that the rigorous proof involved rather sophisticated
results concerning the asymptotic behavior of the differences of divergent series. This does not bode well
for more complex covert channel models of anonymity systems.

Example 1 — the anonymity example: Now we assume that instead of one malicious Alice there
are in fact two malicious Alices. Furthermore, we assume that the Alices do not collaborate with
each other. This may come about because the Alices may be in sub-enclaves within Enclave;, or that
any communication from Alice; to Alice; would arouse suspicion. Each Alice; still wishes to covertly
communicate with Eve using the quasi-anonymous channel between each Alice; and Eve. The difficulty
is that since they are not collaborating, they act as noise with respect to each other and may lessen the
communication. Let us make these thoughts more precise.

There exists a quasi-anonymous channel from Alice; to Eve, and another quasi-anonymous channel
from Alice; to Eve. Each quasi-anonymous channel is a covert channel because the Mix-firewall ideally
should stop any such communication between Alice; and Eve. This above system of two covert channels
is Example 1, the anonymity example (see Fig. 2). Note that the anonymity example involves storage
channels.

1.2 NRL Network Pump™

In [8] the Network Pump™ (see Fig. 3) was discussed as a solution to a secure, reliable, pragmatic, and
robust method of sending messages up from several “Lows” to several “Highs.” When a Low sends to a
High, message acknowledgments, or ACKs, are required for reliability. Unfortunately ACKs can be used
to send information from High to Low, which is against our wishes (Low can “talk” to High, but High
should not be able to “talk” to Low in order to prevent High information leakage). Even if the ACKs
are stripped down, the timing of the ACKs forms the basis of a covert timing channel from a High to a
Low. The Network Pump™ moderates the timing of the ACKs to moderate (but not eliminate entirely)
the covert channel threat, while at the same time not degrading system performance in an intolerable
manner. The interested reader is directed to the literature for more details on the Pump idea. Keep in
mind that the covert channels that pertain to the Pump are timing channels. The thrust of this paper
is on the easier to analyze storage channels.

In the Network Pump™ each Low, L; may send to any High, H ;. With respect to covert channels,
in [8] it was assumed that the Highs were not collaborating and the covert channel analysis looked at
each covert channel from H; to L; separately. A fortiori it was implicit that there there was no pre-
arranged agreement between the H;s. This is important because there was no attempt of multiple H;s
to communicate to a single L;
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Figure 3: Network Pump™ internals

Now, we wish to consider what happens when this is not the case. This is Fzample 2, the Pump
ezample. In this paper we wish to consider H; and H, each attempting to communicate covertly with
a specific Low. Thus, we have simplified matters by assuming that there is only one Low and there are
two Highs.

This forms the basis of of the Pump example. We see that the Pump example and the anonymity
example have a similar mathematical basis. This is the gist of what we wish to explore in this paper.
Note that the Pump example is based upon timing channels. Therefore, we will not be able to use the
capacity results that exist in the literature for the Pump example. Therefore, a full analysis of the Pump
example is put off until we, or others, develop a theory of multiple access communication channels where
the symbols take different amounts of time. However, we have included a discussion of the Pump for
motivation for the simpler cases discussed here, and because of the importance of the Pump itself.

2 Multiple Access Channels

We will use a heuristic definition of a multiple access channel (MuAC) in this paper. For more details
we point the interested reader to [5, Eq. 4], [10, Sec. IIL.A], [4, Sec. 14.3], or [7, Sec. II]. Note that,
except when considering the Pump example, all symbols take the same time to transmit from input to
output. Hence, time is not a consideration; thus the units of rate, mutual information, and capacity
are in bits per symbol (this will be assumed and not written out each time). Therefore, with respect to
covert channels, we are dealing with (covert) storage channels [9], not (covert) timing channels [12]. Of
course the Pump example is a timing channel. As noted we include the discussion of the Pump example
as motivation for studying multiple access channels and for showing the need for more theory in this
area.

We emphasize that the two Highs are not collaborating once transmission begins. However they may
have knowledge of each other’s probabilistic behavior, which does not change over time. In fact they
may agree a priori upon a protocol and coding strategy before beginning their transmissions. This is
necessary so that the transmissions can assist each other in the passage of covert information, rather
than hindering it. This fact does not seem to be well thrashed out in the information theory literature.
However, once transmission begins the two transmitters share no further information?, in fact they do
not even know what each other is transmitting. That they are aware of each other’s existence and have
a static plan for shared transmissions we refer to as the existence assumption.

2.1 Review of Shannon channel

Recall that in a discrete and memoryless communication channel a la Shannon [17] we have one input
modeled by the transmitter random variable X, taking on values z;, and one output modeled by the
receiver random variable Y, taking on the values y;. The probability transition channel matrix deter-
mines the noise relationships in the channel. The (7, j) entry of the probability transition channel matrix

2This assumption is relaxed in the feedback section.



is the transition (conditional) probability P(Y = y;|X = ;) = p(y;j|z;). From the distributions of
X, Y, and the conditional distribution of the p(y;|z;) we can determine® the mutual information? to
I(X;Y)=1(Y; X) as

I[(X;Y) = H(X) - H(X|Y),

where

H(X)=- Zp(fvi) log p(;)

is the entropy of X and
H(X|Y) = Zp (y;)p(zily;) log p(zily;)

is the conditional entropy. The capacity C is the maximum rate at which we can send information
across the channel from the transmitter to the receiver with asymptotically small probability of error.
Rates less than or equal to C' are considered achievable, rates higher than C will probabilistically have
non-trivial error. Shannon has shown that

C =maxx I(X,Y)

(Note in the maximization process the possible non-trivial values of X are fixed at z;, but the probabilities
p(zi) vary.)

We intentionally redundantly state this as: we may transmit reliably (with asymptotically zero
probabilistic error), through proper coding, at rates R that satisfy

0<R<LC.

Such rates are said to be achievable. The reason for this restatement will become clear in the next
subsection. The interval [0,C] is taken® as the capacity region; some call it the achievable rate region

[2].

2.2 Multiple Access Channel Model

A multiple access channel (MuAC) has multiple inputs modeled by X;, corresponding to multiple trans-
mitters, and a single output (the receiver) modeled by Y. For the sake of simplicity let us assume
throughout this paper that there are only two inputs, X; (taking on discrete values z1,) and X, (taking
on discret values x5, ), which transmit to Y (taking on discrete values y;). In a MuAC the two inputs are
not collaborating with each other. However, this is not to say that the two inputs do not have knowledge
of each other’s existence or overall probabilistic behavior. They do have knowledge of each others proba-
bilistic behavior and they agree on a coding strategy/protocol before starting their transmission. This is
the existence assumption that we mentioned earlier. Recall though, once they start their transmissions
they act independently and with no further knowledge of each other. This point is often overlooked in
the network information literature (e.g. [4]). We refer to this shared knowledge and protocol prior to
transmission as their a priori knowledge.

Hence X; and X each transmit independently and separately to Y, but with their a priori knowledge
[10]. So there are two discrete memoryless channels: CH; which is the channel from X; to Y, and CH,
which is the channel from X, to Y. Each channel CH; has capacity C;. Each X; may transmit, with
the proper coding, at some rate R; < C; (these are the achievable rates).

The interesting question is what happens to transmission rates when both channels are in use to-
gether? Do they help each other, hurt each other, or have no effect upon each other? To answer this
we must generalize the idea of the probability transition channel matrix to include a third dimension.
Therefore, when dealing with MuACs we consider the transition probability p(yx|z1,, z2;). The transition
probabilities determine the noise in the channel.

3All logarithms are base two.

4We use the semi-colon " to represent the mutual information between two random variables, and use the comma
“” represent a joint distribution between two random variables. Note that sometimes the comma is notationally used to
represent mutual information between two random variables, which would cause confusion with the joint distribution here.

5For the standard Shannon channel with one input and one output this terminology is usually not employed. It is
usually reversed for the multiple input situation discussed below. However, we feel that it makes sense to include the “one
dimensional” situation as a special case.



The model of the MuAC assumes that one has knowledge of the distribution of the X; and the
transition probabilities. Let R; be the rate for a code for CH;. One may send information across
both channels using a separate code for each channel. Each channel has its own rate. However, we
may consider the two codes and the two rates as a 2-tuple and analyze the average joint error across
both channels. If the error is asymptotically negligible (as for the Shannon channel) then the rate pair
(Ry, Ry) is said to be achievable® for the MuAC [4]. Following [4], we define the capacity region for the
MuAC as the closure of the set of achievable rate pairs.

In section 2.1 we defined the mutual information between two discrete random variables I(X;Y).
First though we need to expand the definition of entropy and conditional entropy for discrete random
variables Aj,..., A,, By ... By, following [3] as:

H(Al,...,An):—Z p(as,...,an)logp(as,...,a,)
H(Bi,...,Bm|Ar,...Ay) = o
- Z p(a1,. -y an,b1,. .. b)) logp(by,. .. bplar, ... an) .

Q1,es@n 0150 m

We next generalize the definition of mutual information for discrete random variables A, B,C (see [4,
Sec. 2.5])
I(A; B|C) = H(A|C) — H(A|B, ()
and
I(A,B;C)=H(A,B) — H(A, B|C) .

Given a set of points I', the smallest convex set that contains those points is called the convezr hull
of I'. This term is well-known in the field of computational geometry. With all the above we are now
ready for the main mathematical underpinnings of this paper. In [4, Th.14.3.1] it is shown that that

Theorem 1 The capacity region for a MuAC is the convexr hull of the set of rate pairs (Ri, Rs) that
satisfy:

0 < Ry <I(X1;Y]Xs), and (1)
0 < Ry < I(X2;Y|Xy), and (2)
0<Ri+ Ry <I(X1,XpY). (3)

We see that our capacity region is now (unlike for the Shannon channel) something geometrically of
interest. If we attempt to (maximally) transmit at capacity across each channel we will most likely run
into trouble, and introduce error, because of the third condition above: 0 < Ry + Ry < I(X1,X5;Y).
This third condition is where the “action is.” It describes how the two channels interfere with each other
in the quest for a large achievable rate. The reason one uses the convex hull determined by Eqs. (1),
(2), and (3) is that a timesharing process is used to send across each channel. The details of course are
in the proof [4].

Definition 1 A covert channel that is modeled by a MuAC is said to be a multiple access covert channel

(MuACC).

By our previous discussion such covert channels must be storage channels. (Of course we need a
theory for dealing with multiple timing type channels, as in the Pump example.) We feel that it is
important to introduce and to study MuACCs. The area of covert channel analysis has not touched on
MuACs before. We will show that MuACCs introduce another dimension to the field of high-assurance
computing which must be taken into account when analyzing the security of systems.

SWhen dealing with the Shannon channel, the capacity forms an upper bound for rates whose maximum probability
of error approaches zero. It can be shown that using average probability of error suffices [3, Lemma 3.5.3]. However, for
MuACs the error of the codes that give us the rate pairs is only considered to be average error. It seems to be unknown if
the capacity region forms bounds for codes with rate pairs whose maximum error goes to zero.



2.3 Anonymity Example revisited

Consider the anonymity example where there are two Alices and no Clueless senders. So, we have a
covert channel from Alice; to Eve and a covert channel from Alices to Eve, by assumption the Alice;
do not collaborate with each other. We see that this is a MuACC since both Alice; and Alicey are
attempting to covertly communicate with Eve. What is the capacity region for this MuACC?

0,0 0

\1
1,0/

1,1 2

0,1

Figure 4: Channel transition diagram

First, let us consider each channel separately. Assume that there is only Alice;. Alice; either sends
or does not send a message from Enclave; to a recipient in Enclave;. Eve can only count messages going
from Enclave; to Enclave;. Therefore, Eve either receives a 0 or a 1. The capacity of this (not so) covert
channel is 1. Now, what happens when we also have an Alices (there are still no clueless users)? The
actions of Alices function as noise for CH;, the covert channel between Alice; and Eve. As shown in
[13], the capacity across CH; varies from 1 (no noise) down to 1/2 (maximum noise) when there is one
other transmitter acting in as a Bernoulli random variable with parameter p. The situation of maximum
noise corresponds to p = 1/2, and capacity is 1, when p =0 or p = 1.

We now continue with our study of the MuACC. We represent the possible inputs to the MuACC
as a 2-tuple. That is (a,b) means that Alice; inputs a, while Alices inputs b. If the dual input is (0,0),
Eve receives a 0. Eve then knows that both Alices input a 0 and there is no noise. The same holds
if the dual input is (1,1), Eve receives the message count of 2, and knows that both Alices input a 2.
The noise comes in when the input is either (0,1) or (1,0). In this situation Eve receives a 1, and only
knows that one Alice input a 1, and another Alice input a 0, but Eve does not know which Alice did
what. However, we see that if Alice; is content to always transmit a 0 (achieving a throughput rate of
0 on Channel;) then Alices can transmit at any rate up to 1 on Channels, and visa versa. These facts
correspond to the left and bottom boundaries, respectively, in Fig. 5. These can also be taken as the
boundary values in Egs. (1) and (2).

The more interesting question is what happens when both Alices are acting in a non-trivial manner?
(Note that our analysis follows directly from [4, Ex. 14.3.3].) Assume that Alice; is maximally trans-
mitting across Channel; to Eve, that is Channel; has a capacity of 1. In this situation Alice; is sending
0s and 1s with equal probabilities of 1/2. In this situation Channel; is a binary erasure channel with
an erasure factor of 1/2. Hence the capacity of Channel, is 1/2. Similarly, when Channel, transmits at
rate 1, Channel; has a maximum rate of 1/2. These combined rates correspond to the points (1/2,1)
and (1,1/2) in Fig. 5. They also represent the extrema of Eq. (3). Thm. 1 states that the capacity
region is the convex hull of the set of rate pairs satisfying Eqgs. (1), (2), and (3). Thus, we see that by
“connecting the points” (0,0), (1,0), (1,1/2), (1/2,1), and (0,1) we have the capacity region as shown in
Fig. 5.

Tt is certainly if interest that we can achieve a maximum joint combined rate of 3/2. Of course this
is under our assumption that they are not collaborating while transmitting. The next subsection shows
that if the Alices do collaborate while transmitting they can, not surprisingly, do better than a combined
rate of 3/2. However, for this simple example at least, the two Alices do not do much better.

2.4 Collaborating MuACC

Of course, keep in mind that the channels are not collaborating and their transmissions are independent
of each other. However, if Alice; and Alices conspire prior to their communications with Eve, they could
possibly split a large file between then and thus transmit at a rate of 3/2. Therefore, we see that the
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Figure 5: 2 Alices only: Capacity Region

lesson learned is that in a network covert channel scenario one must look at more than the individual
covert channel capacities. The true throughput for covert communication is at a sub-additive level of
the individual capacities.

If the two Alices are collaborating synchronously (acting as a single transmitter) they can achieve
a capacity of log3 ~ 1.58. In this case we have three output symbols for Eve: 0,1,2 (and the situation
is modeled as a standard covert channel.) By collaboration Alice; and Alices; can send these symbols
noiselessly to Eve. Note that log3 is only slightly larger than 3/2. Of course, analysis between the
collaborating and non-collaborating cases must be studied for more complex situation before any con-
clusions can be drawn. However, log 3 is the maximum rate at which Eve can receive information. There
are three output symbols, so one cannot do better than log3. Therefore, we see without transmitting
together the best the covert transmitters can hope for is 1.5 bits per symbol, and by acting as one
transmitter this can be raised to log3 bits per symbol. However, we consider the case of the two Alices
acting as one transmitter to be too extreme. We still stick with the assumption that the Alices, even
though they may agree on coding strategies prior to transmission, do not collaborate once transmission
has started. Therefore, the maximum combined throughput is 1.5 bits per symbol. Or is it? We will
return to this issue in the section on Feedback.

3 Clueless; as noise

So far in all of our concrete work we have concentrated on the very simple example of two Alices and no
Clueless users. Unfortunately, the three equations comprising Thm. 1 are quite difficult to work with.
Certainly adding Clueless users increases the noise and hence lessens the combined rates. We have also
constrained ourselves to only two active covert transmitters (Alice; and Alices) in our examples. We
can certainly have many such Alices. The purpose of this paper was to introduce the concept of multiple
access communication channels to the covert channel community. This paper is far from a complete
exposition. It is meant to whet the appetite of the reader for the areas of covert channel analysis that
have not been considered before. The results with no clueless transmitters can also stand on their own
as bounding cases. We conclude this paper with a very interesting and surprising result of Gaarder
and Wolf, that for multiple access channels, feedback can increase the combined rates. This has serious
implication for the covert channel analysis that was done for the network Pump [8].

4 Feedback

By our results above we know that the maximal combined rate pair sums to 3/2. This can be achieved
for example by the rate pairs (1,1/2), (1/2,1), (3/4,3/4), etc.. The rate pair of (3/4,3/4) comes about
because the capacity region is the convex hull of the rate pairs satisfying Eqgs. (1),(2), and (3). In [6], a
rate pair of (.76,.76) is constructed. Of course, this is not the same scenario that we presented above.
In the above it was tacitly assumed that there was no feedback from Eve to the Alices. For a single
input discrete memoryless channel this need not be explicitly stated since feedback does not increase



capacity [18]. At first this result seems counterintuitive, but the genius of Shannon’s coding theorem
takes all cases into account. What is surprising is that this does not hold for MuACs. Gaarder and Wolf
[6] demonstrated this fact interestingly enough for a channel just like the one we have been analyzing.

We will now show that if Eve is allowed to send feedback to Alice; and Alices that a rate pair of
(.76,.76) can be achieved. Thus we have a rate pair with a combined rate of 1.52 > 1.5. Gaarder and
Wolf [6] use a simple technique with a clever proof to show that (.76,.76) is achievable.

Each Alice; knows what was received. Thus, if the Alice; know that Eve received a 0, or a 2, they
know that Eve received the symbols without noise, and all is fine. However, if the feedback to the Alice;
is that Eve received the symbol 1, they know that there is noise and Eve does not know if the channel
input was (0,1) or (1,0). However, the Alice; use this to their advantage. The Alice; agree to just
attempt to send the input for Alice;, the coding/decoding strategy agreed upon on both ends is that
after the symbol 1 is received the Alice; will retransmit the symbol of Alice;, the symbol for Alices will
then be the mod 2 complement of the Alice; symbol. The Alice; actually have 3 symbols to play with,
not just two, since they can now noiselessly send (0,0), (1,1), and, without loss of generality (0,1). So
they have an input range of log3 bits. This is only after the noisy symbol of 1 is received by Eve. N
is chosen so that .76 N is an integer K. To achieve a rate pair of (.76,.76) both Alice; and Alices must
transmit 2% messages in N uses of the channel. This is accomplished by each Alice; sending K uncoded
bits (of course if there was not any noise when Eve received a 2 we would be done. Let @) be the number
of transmissions for which Eve received a 1. We are left with N — K = .24N uses of the channel to try
to “get the noise out”. As discussed above the Alice; can actually send 3 symbols in each of these type
uses. So, as long as 29 < 3NV ~K the noise can be taken out, and we would be able to send 2:7%V distinct
and noiseless messages in N uses of the MuACC.

This now boils down to showing that the probability p. = P(292 > 3(¥=X)) can be made as small as
desired. We may rewrite p. as p. = P(Q > .24Nlog3). Recall that @ is the number of transmissions
where Eve receives a 1. @ may be modeled as a binomial random variable with parameters N, 1/2, this
is since there are N trials and each outcome (0,0), (0,1), (1,0), and (1,1) is equally likely (since there is
no bias in whether the Alice; send (0,1) or (1,0)). Therefore half of the trials result in the output 1 to
Eve, hence the 1/2 parameter. Therefore, ) has mean y = K/2 and variance 0> = K/4. Thus, with
K =.76N, = .38N and 02 = .19N. Since
pe = P(Q — Q > .24N1log3 — Q) = P(Q — Q > .38039N — .38N)
= P(Q — Q > .00039N), aznd P(Q — @ > .00039N) < P(|Q — Q| > .00039N) we have by Chebyshev’s

(.000%9 Nz = (.006}399)2 ~- Thus we see that as N grows p. approaches zero, so the

error can be made as small as possible with a rate pair of (.76,.76). Gaarder and Wolf never claimed
their method was optimal, in fact if we attempt the same procedure with at rate pair of (.77,.77) we
have non-trivial asymptotic error. What is so important about Gaarder and Wolf’s example is that it
is above (.75,.75). The actual bounds are unknown. However, we do know that the combined rate pair
cannot be greater than log 3 = 1.5850, since there are only three output symbols (0,1,2) received by Eve.
Therefore the true capacity region, if we allow feedback is greater than what is given by Thm. 1.

inequality that p, <

5 Conclusion

This has been a brief introduction to the area of MuACCs in covert channels. In it, we consider only
the noise introduced by multiple transmitters (i.e., there are no clueless senders). Clueless senders act
as noise to the Alices, but we still must consider some sub-additive measure of the individual capacities.

Here, we have only considered the simple case of two conspiring Alices; there could be more covert
channel senders. Future work will study the effects of more transmitters, as well as the effects of clueless
senders on the capacity. It will compare these to the effects of clueless senders on a single transmitter
with multiple symbols.

The simplified Mix under consideration is a timed Mix, so the channel is a storage channel. In the
case of threshold Mixes, the output is always the same (a constant number of messages each time it
fires, sent to the other Mix-firewall), but the time between firing varies. Hence, it is a timing channel.
We know of no theoretical or other type results for dealing with multiple access type channels where
the time values are the information carrying symbols. This is an open area of research that should be
investigated.



We also note that the best coding and transmission strategy that Alice; can use when Alices is
also transmitting may be different from the best coding and transmission strategy she can use when
Alice, is not transmitting, even at the same channel rate for Alice;. Since we assume that neither Alice
knows whether or when the other Alice is transmitting, their coding method and transmission strategy
must accommodate these contingencies. It is easy to require that both Alices continuously exercise the
channel, sending dummy messages that are discarded by Eve when they have nothing to send, but this
seems wasteful. In fact, since the absence of transmissions by the other Alice should reduce noise in the
channel, it should become more reliable when the other Alice stops sending for some time. However,
this has not been shown here, and begs for further investigation.

The purpose of this paper is to point out how the theoretical tools of network information theory
allow us to examine covert channel in networks in a new light. We can no longer simply study the covert
channels in isolation to get a complete gauge of the potential amount of information leakage. We must
see how multiple channels can act in unison to leak information.
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